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ABSTRACT
Predicting cognitive workload using physiological sensors
has taken on a diffuse set of methods in recent years. Many of
these methods, however, train models on small datasets with
hand selected features, limiting a model’s ability to transfer
across participants, tasks, or experimental sessions. Here, we
explore new potential methods of integrating data from and
modeling on a large, cross-, participant, task, and session, set
of high density functional near infrared spectroscopy (fNIRS)
data by using an approach grounded in cognitive load theory
and data warehousing techniques in combination with Long
Short Term Memory Networks.
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1 INTRODUCTION
If a system seeks optimal performance between a human
agent and a computerized system then the amount of cogni-
tive workload (CWL) on the part of the user must be reduced
by the greatest degree possible. As computerized systems
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become more omnipresent in everyday life, and reliance on
them increases, the impetus to achieve optimal performance
between a system and a user becomes increasingly important.
Past research indicates that increased CWL on the part of the
user has had deleterious effects on both performance [41]
as well as reaction times [22] when working in a simulated
real world task environment. Other evidence indicates that
these same demands elicit similar effects when interacting
with computerized communication systems [33], as well as
when performing basic cognitive tasks within a laboratory
setting [2, 40]. If further increases in performance are to be
had from these types of systems then accurate and effective
measurement and prediction of CWL is crucial to driving
these performance gains.
In recent years the use of physiological sensors has been

gaining in popularity as a way to measure an individual’s
CWL during real work task performance. Previously, much
work in the CWL domain was reliant either on behavioral
scores, such as task performance and reaction time data,
or subjective survey measures administered after the com-
pletion of the task. Though in some cases these measures
may suffice, if the goal is to make adaptive systems more
accurate in their predictions as to the user’s internal state,
then the use of real time physiological data to make these
classifications may be a more robust measure by which to
accomplish this. As the community has turned towards us-
ing physiological measures a device, functional near infrared
spectroscopy (fNIRS), began to serve key purpose in the CWL
problem space as a tool that allowed researchers the ability
to record information about oxygenated and deoxygenated
hemoglobin levels in the brain portably and non-invasively,
which has allowed researchers access to real time informa-
tion about individual’s brains while they are subjected to
ecologically valid (i.e. "real world") task environments.
Though the use of fNIRS has continued to gain traction

in the research space through the years there still remain
overarching concerns and shortcomings within the work-
load classification domain about fNIRS’ efficacy at classifying
cognitive states. Accuracy measures for predicting CWL are
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often times reported to be fairly substantial [48], but these
high accuracy measures come on the back of the classifica-
tion models being trained on relatively small subject pools,
with hand selected features, and fail to maintain these accu-
racy measures when tested on data taken from other sames
of individuals, making it likely that the models themselves
could have overfit to the either the individual or the entire
subject pool. If further progress is to be made in this field
then models ought to be trained on larger, and more varied
data sets, and ground truth values that are more reflective
of the underlying theories in CWL ought to be used. This
can be accomplished by combining insights from lower level
behavioral and self report measures used in previous liter-
ature to gain a better understanding of what types of load
are known to elicit distinct responses in the human brain.
The use of domain knowledge within the CWL as well as
fNIRS fields should allow not only more accurate and trans-
ferable models, but also models that are able to make these
predictions with a smaller set of data.
It is for this reason that in this submission we propose a

data warehousing technique by which researchers can query
over a set of data, taken from multiple participants in multi-
ple experiments performing multiple tasks, and use a system
developed by domain knowledge to label these sections of
brain data based on the level of cognitive load undergone by
the user during that task. By using this storage and analysis
technique for labeling our ground truth measures for classifi-
cation, we allow a more iterative approach to modeling and
classification techniques, which may lead to broader insights
about large data pools. It should also allow researchers to
better leverage these insights and to allow for them to work
in tandem with their modeling hypotheses. This application
of labeling and storing fNIRS data in a researcher query-
able format, known as PyoNIRS, should allow researchers
working within the CWL and fNIRS research areas to reduce
the problem space within datasets to a more manageable set
of models, models which will be tied to a clearer set of hy-
potheses. Further, these insights from preliminary analysis
should also allow users to down sample the size of the data
being fed into the model by relying on what features lower
level analysis deem most important for making predictions
about individual cognitive load states. This, in turn, should
allow for faster iterations in modeling procedures, resulting
in more accurate models that require less input in order for
their predictions to be made.

2 RELATEDWORK
The Brain and Brain Measurement
The human brain is a complex structure, comprised of, on
average, 86 billion neuronal cells [30]. Between these cells
exist hundreds of trillions of synapses, or areas between cells

where information is transferred from one neuron to another
in the form of a chemical signal [58]. The work of multiple
disciplines, ranging from cognitive neuroscience to computa-
tional biology, has yielded great advancements in our ability
understand the human brain [26]. Though past research in
the neuroscientific community has focused on differentiating
these discrete cortical (outer surface) regions based on dis-
tinct functional specialization, further evidence is beginning
to suggest that the interactions across these functionally
specialized regions plays a role in higher level cognitive pro-
cessing [62]. These functional systems, or networks, involve
areas of cortex that are anatomically distant from one an-
other in the brain, but whose patterns of connectivity are
temporally correlated [17]. The neuroscience literature has
linked many cognitive processes to specific brain areas, and
these links are termed neural correlates [14, 18, 20]. While it
is often assumed that there is a simple one-to-one mapping
between processes and brain areas, in reality it is more com-
plex with a many-to-many mapping between activations
in certain regions and human processes [47]. These find-
ings suggest that fNIRS may have a further roll to play in
neruoscientific research as the strengths of fNIRS allow it
to measure distal sections of brain activation with a greater
temporal resolution than that of other brain measurement
modalities, such as functional magnetic resonance imaging
(fMRI). fNIRS systems work by the use of near-infrared light,
which can penetrate through scalp and skull to reach the
brain cortex. The optical fibers are placed on the surface of
the head for illumination while detection fibers measure light
which reflects back. Particularly, concentration changes in
oxygenated and deoxygenated hemoglobin can be measured
by measuring the amount of light that is reflected back from
the brain into the light detector [15]. A review of the history
of fNIRS, can be viewed in the work of Ferrari et al. [23] as
well as Boas et al. [10]. fNIRS the beefit of being a go between
in terms of spatial as well as temporal resolution when com-
pared to other popular brain measurement equipment. fNIRS
has a higher spatial resolution than EEG, making it possible
to localize specific functional brain regions of activation, as
could be done with the constrictive fMRI device [45]. The
temporal resolution of fNIRS is better than that of fMRI, but
is significantly less than that of EEG. The ability to spatially
locate specific functional brain regions of interest enables
high-density fNIRS sensors to identify specific neural corre-
lates of CWL and other mental states of interest. The nature
of brain correlations with certain cogntive tasks involving
both a spatial as well a temporal relationship also makes
brain data well suited for classification using deep neural
network tecniques such as LSTMs and Convolutions Neural
Nets [52].
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Cognitive Workload Modeling
Recently, increasingly effective strides have been made in
being able to predict and modulate the CWL level in tasks by
using both behavioral [11, 29, 34] and, more recently, phys-
iological and psychophysiological [2, 19, 40], measures to
classify different levels of CWL. Though these steps have
elucidated some of the underlying problems with classifying
and predicting CWL we still lack a clear picture of what an
ideal approach to creating more accurate and grounded pre-
dictions might be [16]. Differences in theoretical grounding
of CWL lead to differences not only in CWL manipulations
in experimental paradigms, but also competing evidence as
to which measures (behavioral and physiological) are most
effective at measuring CWL [16]. A subset of the field that
shows increasing promise in terms of CWL level prediction
is the use of non-invasive brain measurement modalities in
order to predict a user’s internal state [16]. Among these
non-invasive measurements functional near infrared spec-
troscopy (fNIRS) has been increasingly adopted and utilized
for it’s, robustness to noise and ease of use [57].
Further complicating matters is that as more advanced

methods of interaction between computerized systems and
their users are developed, issues arise not only from the
implementation considerations that are pertinent to the sys-
tem [66], but also as a result of the lack of epistemic gains
from the technologies used to achieve the implementation.
This information bottleneck which is currently inherent the
use of deep learning algorithms on data [60], is especially
troubling when trying to optimize systems that are able to
predict different types and different amounts of cognitive
workload in the user. Even if accurate classification of CWL
load level is accomplished it is often unclear as to how this
accuracy was achieved. If researchers and developers of au-
tonomous systems ever hope to achieve reliable results then
newmethods must be developed that mitigate the downsides
of "black box" modeling while leveraging the components of
the technology that make it so useful at generating accurate
predictions.
Reasons why there may so many problems within this

space is that CWL has always been viewed as a single con-
struct, or CWL may be a component of an individual’s state
rather than a component of the task that the individual is
undergoing. Recently, some have proposed the used of multi-
class, multi-label classification as a way to break down the
issue of cognitive load into more discreete pieces of load
[48]. This approach, however, is not immune to it’s own set
of issues. One current problem within the multilabel clas-
sification domain that is exacerbated by the problem space
of classifying mental states is that of label selection. Not
only is the selection of a label schema that is representa-
tive of the underlying physiological data important, but one

must also consider how many discrete labels should be used
to accurately predict a given cognitive state. Though there
has been success in using neuroimaging modalties coupled
with machine learning techniques in the past [56], these
successes are typically working within classifying discrete,
tightly controlled, stimuli adjustments [63]. Past work also
shown that a cognitive resources’ (working memory) load
level is able to be predicted using neurophysiological data
[25, 27]. These results are promising, but the labeling schema
in these studies may be too coarse-grained so as to miss out
on crucial distinctions in the sub-components of the working
memory system that cognitive models indicate can be dis-
tinguished from one another [4]. Though higher numbers of
labels may be needed in order to properly carve a cognitive
process at it’s natural or theoretical joints, models trained
on larger labeling schema could also become overly atom-
istic and therefore limit themselves in terms of their actual
explanatory power. Others contend that theories may need
to be reworked in order to accommodate new experimental
as well as theoretical considerations [54]. A higher number
of labels also carries of excess baggage of becoming more
computationally expensive, especially in the case of binary
relevance classification. Though, this concern may be abated
by evidence which indicates that dimensionality reduction
with large labeling schema is possible [8]. Proposed solu-
tions to these issues are in no way exhaustive, and much
work should continue be done within each of the mentioned
problem points in order to work out potential solutions that
may prove fruitful in this problem space.

3 METHODS
Current Dataset
The PyoNIRS systemwas developed from and for the purpose
of mining knowledge from a large, cross experiment, cross
participant dataset collected using a Hitachi ETG-4000 fNIRS
device. The data set contains data from 11 different experi-
ments with an average n of 21 data files per experiment (min
= 10, max = 63). The total count of fNIRS data files within the
current data repository is 245. To begin, only the two most
recent data sets within the total dataset were selected for use
within the PyoNIRS system. The reason for this approach is
the most recent experiments have the vast majority of the
data within the data set and are also the most complicated
experiments run within the entire dataset, the rationale be-
ing that if the PyoNIRS system were able to accommodate
the most complicated data files within the dataset then the
ability to import data files from other experiments into the
PyoNIRS systems should be relatively straightforward in
comparison. After selecting for the two most recent exper-
iments, the total number of data files involved in both the
data cleaning pipeline as well as data analysis and modeling
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Figure 1: Above: The distribution of task (by number of sam-
ples [rows]) corresponding to each task). Below: The distri-
bution of labels (by number of samples) corresponding to
each label assigned to the tasks listed above.

portions of the project was reduced to 80 valid fNIRS data
files. The total participant count within the selected dataset
was therefore 61 (as one experiment had the participants use
multiple sessions).

The ETG-4000 device uses near infrared light to measure
levels of oxygenated and deoxygenated hemoglobin across
the cerebral cortex of human subjects by creating multiple
channels of light source and light detector pairs. The device
samples at a rate of ten samples per second, and each exper-
iment had an average data collection time of 36.4 minutes.
Most common within the dataset is a probe configuration

which uses a 3 X 11 array of optodes which were placed over
participant’s forehead area, measuring the prefrontal cortex
of the brain. These datasets contain 52 separate points of
measure on the prefrontal cortex. Within our dataset, how-
ever, there are also experiments which used a different array
of optodes and therefore have 40 channels of data. Of these
channels, 20 where placed on the prefrontal cortex and 10
were placed on both sides of the head over an area of the
brain known and temporal-parietal junction (TPJ), or the
area in which the brain’s temporal lobe and its parietal lobe
meet. The data set we currently have access to has human
participants performing various tasks, from responding to
tightly controlled stimuli adjustments, to performing more
ecologically valid tasks. Though these data files with the 40
channel probe configuration exist within the total dataset,
they were not present in the down selected sample of data
we used for development and analysis. In order to accom-
modate those other files a separate system would need to
be developed such that the channels were mapped to either
the 10-20 EEG system for head space localization [31], or
to use a more complex tool such as NIRS-SPM [68] to map
the channels within the dataset to their underlying brain
regions so that like channels across different probe configu-
rations could be easily compared. This "channel mapping"
could also be accomplished correlating the channels in dif-
ferent headsets to Broadmann areas [3] on the brain using
techniques used by past researchers [42, 50]. Though this
has been useful for combining data files from different ex-
periments there are perhaps still better ways in which the
data can be merged. The first of which being that rather than
using Broadmann areas, which divide the brain’s cerebral cor-
tex based on different cell structures, more recent anatomical
terminology and functionally differentiated regions of the
brain could be use with which to map non-identical channels
in different probe configurations. More work should be done
to investigate whether or not this technique would bear any
fruit and allow researchers to hold on to, or at least leverage
more of the data sets that they have in their possession. An-
other option, which may be beyond the scope of this project
but which is worth mentioning is that areas of the brain,
though physically distal from one another may all be part
of a functional network of brain regions. We were to com-
bine channels of fNIRS data based instead on the functional
connectivity we may be able to leverage a greater amount
of the current dataset, and therefore derive more interesting
patterns in the temporal nature of these networked areas
[7, 32, 49]. As we planned on using LSTM modeling for the
next step in the procedure, the use of probe configurations
that we were confident represented the same spatial map-
pings to the human brain was important [38], and we were
not satisfied by our efforts to algorithmic convert different
probe mappings to a universal space (the sheer amount of
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data within the dataset meant that doing so by hand would
have been untenable given the time constraints). they we
The dataset we currently have access to have not changed
since the inception of this project, though the way in which
we interact with the dataset has. Developing and using Py-
oNIRS has enabled the The bulk of our work has focused
on creating a streamlined way to warehouse to current data
into a more manageable and easy to access format.
As seen in Figure 1, there was a significant amount of

difference between the distribution of end labels assigned
within the dataset we were working on. This led to some
difficulties in the modeling process that were attempted to be
overcome first by down sampling themajority class, and then
by novel modeling techniques, but even with these efforts the
skew within the task distribution remained a problem point
throughout the work of this project. The reason for this is
that as we were trying to train many models on the different
label types there were certain conditions for which we had
very little accuracy for. Future work within the field should
attempt to find ways to handle these sorts of data imbalances
that may often come up as a result of experimental designs
that were not developed with the idea of advanced statistical
modeling in mind.

PyoNIRS Overview
This pipeline has been the bulk of our focus throughout this
first period of development of the project as it has involved
tying together multiple data streams and leaving open the
possibility of allowing for further data entries in the future.
A architecture diagram of the PyoNIRS system can be seen
in Figure 2. The figure shows a birds eye view of the bulk
of the systems within the PyoNIRS program that are used
for cleaning and organizing the current dataset into a new
format that is more conducive to the types of analysis that
can be then carried out in the modeling steps. First, the data,
and a special pointer file about the conditions a participant
underwent during the data session, called a ’conditions file’,
as well as metadata information about the participant are
all fed into the PyoNIRS application. Once all this informa-
tion is present within PyoNIRS the application goes through
the preprocessing procedures such as noise removal. This
noise removal is achieved first by using a bandpass filter
[21] to filter out unwanted signals within the overall opti-
cal signal recorded by each fNIRS device. As the signal is
measuring light intensity, and this light intensity is used to
measure Oxy- and DeOxy hemoglobin levels in particular
areas of the cortical surface underlying physiological noise
such as meyer waves [55] and heart rate [46] must be re-
moved from the data to ensure that was is being measured is
only the the signal of interest with respect to levels of Oxy
and DeOxy hemogolin that are part of the BOLD (Blood Oxy-
gen Level Dependent) signal [39]. After the data is filtered,

noise removal techniques are used to deal with potential mo-
tion artefact within the data. Currently, our noise removal
step for motion artefacts is wanting in that we discard the
channel in which the artefact was found to be present (an
event in which a light intensity jumps 8 standard deviations
above the mean signal is determined to be a motion arte-
fact). We plan to use better remove and reduction features
in the future before the final modeling process begins. After
this step the raw light intensity is converted into Oxy and
DeOxy- hemoglobin levels using the modified beer-lambert
law [5, 37]. As a pre-processing final step, all of the data
is normalized by data channel using z-score normalization
which allows not only the channels to be consistent with
one another, but also allows for each data file within the
dataset to be compared in even statistical space [55]. After
the pre-processing step, PyoNIRS then, using the ’conditions’
file, which gives a string label to each task the participant
completed as well as the indexes for the beginning and end
points of that task condition in the original data file, the data
is cut into task chunks and stored in the database with both
the task label, and metadata about the participant stored as
a label for that particular data chunk. The data can then be
indexed and queried by a user based on both task condition
as well as by meta data parameters.

We will then leverage the information obtained from the
previous step to begin to modeling process. We will to com-
pare multiple models using multiple labels to determine
which modeling yields the best accuracy for this type of
data. We will be guided by, but not limited by, the previous
work done in the domain, eluded to in section 2. For more
information about proposed model inputs, training types
and model architechtures, refer to fig. 4.

Data Pre-processing
Hemoglobin Conversion, Filtering, and Normalization. A par-
ticular challenge when working with fNIRS data as opposed
to data obtained using other neuroimaging modalities is that
the optical data captured by fNIRS systems is much more sen-
sitive to forms of physiological noise that magnetic (fMRI)
and electrical (EEG) signals are not sensitive to [35]. For
this reason the noise removal steps currently implemented
within the data pre-processing pipeline operate on the raw
optical signal files obtained from the fNIRS device, and do
not rely on the software within differing fNIRS systems to
handle to pre-processing as the manufacturer’s algorithms
and parameters of these pre-processing steps may differ from
one another and would not allow the comparison between
fNIRS files obtained on different systems. For each file within
the dataset the raw optical signals first converted into rate of
change of oxy δHbO and de-oxy hemoglobin δHbR values
using modified Beer-Lambert Law [5]. After the HbO and



Conference’17, July 2017, Washington, DC, USA Dhruv Grant and Dr. Hirshfield

Figure 2: The architechture diagram of the PyoNIRS preprocessing and data warehousing application which will be use as a
springboard for model development and further data mining techniques.

HbR values are obtained these values are then band-pass fil-
tered using a 6th order Butterworth filter with low and high
frequency of 0.01Hz and 0.5Hz. These filters serve the pur-
pose of filtering out physiological noise from low frequency
drifts in the optical signal as well as high frequency cardiac
noise, respectively [1]. However, these efforts do not filter
out the remaining physiological noise such as Meyer Waves
(from respiration rate) and blood pressure artefacts as these
signals occur at similar frequencies to that of the brain activa-
tion signal that is attempting to be measured using fNIRS [9].
To account for these other forms of physiological noise the
general linear model (GLM) was used as an offline adaptive
filter over the data [24]. Had the dataset not included pure
fNIRS data and also included the physiology, there are other
substantive measures that could have been used in stead
of the GLM. Another method of this subtractive method
for physiology removal involves the use of "short channel"
fNIRS detectors, that would detects the physiological signal
at the scalp level, and uses this physiological information as
a method by which the remove the physiological noise [1].
As a result of the the measure obtained after these conver-
sion and filtration steps being a delta all of the values within
the data files, and does not reflect a total level of HbO and

HbR, the resulting values are then z-score normalized so that
consistent analysis can occur across participant files.

Noise Removal and Motion Artefacts. Working with a dataset
this size also brings other challenges, especially in fNIRS data
where motion artifacts and other types of experimental noise
can reduce signal quality [12]. The data must first be passed
through in its entirety to ensure that proper noise removal
techniques and motion artifact algorithms have been run
consistently across the entire dataset, so that the samples fed
into the models are consistent. Many different methods to
help combat this noise within the data from simple methods
such as discarding or smoothing out of the signal, [12], to
more complexmethods such a wavelet-transform [43], to pre-
whitening [6] and channel weighting [59] techniques such
as those used in the NIRS-toolbox [51] application. Looking
through the motion artefact removal algorithms in many
of the modern fNIRS analysis packages show diverse meth-
ods for the removal of these noise artefacts. The simplest, a
smoothing, algorithmwas chosen for the current purposes of
PyoNIRS as it did not disrupt the temporal nature of the data
which would be use in the modeling process. Fortunately,
many of these algorithms have been open sourced and can
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easily be added to the preprocessing pipeline in future de-
velopment iterations for this project if a more robust motion
artefact remove system is needed. As a result of the temporal
nature of fNIRS data, and the importance of maintaining the
temporal information about the underlying brain structures,
this dimension of the data ought be preserved and leveraged
during our modeling process. This means that noise removal
options such as removing that chunk of data from analysis
may be deleterious to the features learning in more complex
modeling operations. For this reason, it will be wise for re-
searchers maintain the use of algorithms that do not disrupt
the temporal aspect of the data.

Data Cleaning and Labeling Structure. Another, more theo-
retical challenge, with the current dataset is the establish-
ment of ground truth for the labeling configuration. Though
there is no direct way around this challenge, we have instead
opted for a more user focused approach in our pre-processing
pipeline. Our pipeline does not bake in the the end labels of
the data and instead allows the user (in our case the modeler)
to define their own labels based on the simple string labels
that are included within the current dataset. The user, rather
than labeling the data directly by the task, can instead pass
a dictionary of labels to the dataset when retrieving the data
from the data warehouse. This allows for a task, such as a
working memory task, to be relabeled to the user’s needs
in each particular modeling situation and allows for greater
flexibility and re use of the currently indexed data within the
dataset. Along with not baking the labels in, we have pro-
vided the ability to run unsupervised learning methods on
data currently pulled from the database, which could allow
for some interesting explorations on similarities in brain pat-
terns when doing novel tasks, which may give information
about common patterns in brain activation in varying task
environments.
Though our current infrastructure allows for multiple

multi-labeling schema to be easily implemented prior to
model training, our current labeling schema pulls heavily
from CLT. Our current labeling schema consider the load
that is placed on three of the four mental components theo-
rized to be involved in CLT: Working Memory Load, Visual
Perceptual Load, and Auditory Perceptual Load.Within these
three variables we assign either a ’Off’ (0) in the case of no
load on that cognitive resource, a ’Low’ (1) in the case of
low load on that cognitive resource, and a ’High’ (2) in the
case of high load on the cognitive resource. As a result of
this labeling infrastructure, we can also expand the number
of labels to better fit differing cognitive theories. As men-
tioned previously, particular models of working memory
show that different types of working memory can be ex-
perimentally isolated. Figure 3 shows examples of sample

tasks, included within our current dataset and potential la-
bel schema for those tasks using a task based approach. If
a researcher wished to instead devise the labeling schema
as a variable of an individual participant, rather than as a
variable of the task. These features are thus far hand selected
features, but there is the possibility to add more advanced
statistical and mining techniques to derive these features
from the underlying data. To validate this reduction it might
be important to model both the raw signal as well as the
hand reduced and algorithm generated features to ensure
that the way in which the dataset is being reduced does not
have a deleterious effect on the accuracy of the models our
efforts are trying to generate. Unsupervised learning meth-
ods might also be added to the beginning of the pipeline, this
would allow a researcher to check against their current label
schema before performing more advanced modeling to help
in gauging as to whether or not their current subdivision of
labeling shows any preliminary effect before more advanced
modeling techniques are pursued.
Our research could help not only provide guidance as to

which model configurations and labeling techniques will
yield the best accuracy measures on fNIRS data, but pre-
liminary pattern mining and feature extraction may also
contribute to a better understanding of why these model
architectures and label configurations achieve this level of
performance. Our plan to use both a top down approach with
modeling using deep learning architectures, where our trade
off will be explainabilty for increased accuracy, as well as a
bottom up approach with direct pattern mining and unsuper-
vised learning to aid choosing the proper inputs to feed into
the models. Thus far, we have managed to keep on track with
this possible set of contributions as well as expand on it in a
few keyways. For one, our up front work in developing a way
to pre-process all of the data within the database in a similar
way can allows for greater replication of whatever results
our finally modeling process yields. Another upshot of this is
that the low level pattern mining over feature extracted data
allows for a further level of hypothesis generation, which
can better inform what models should seek to take as inputs,
not only to drive greater classification performance from the
models, but to also allow researchers some insight into why
a certain model may out perform another. This allows the
modeling to not only have the pragmatic benefit of getting
closer to making more accurate and perhaps more timely
predictions over this type of data, but to do so with greater
interpritability, which is an Achilles’s heel of more advanced
deep learning classification methods [60].
Our model generating infrastructure, in an attempt to

remain as agnostic to theory as possible, is designed to ac-
commodate multiple multi-labeling schema. There is debate
within the cognitive load theory (CLT) community as to
whether or not cognitive load is a component of the task or
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is a component of the individual performing the task [44].
Our labeling schema attempts to curtail this concern by in-
stead allowing for model generation that is able to be labeled
by predefined task conditions (the task the participant was
engaged in invoked high visual perceptual load), by self re-
port measure (the participant indicated that their visual load
was high for this particular task), as well as by task per-
formance (the decrements of performance during this task
indicate the participants level of load was high in this task).

N-Back
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Emotional Working Memory
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Figure 3: The Load Labels for Multiple Tasks used in Task
Battery with labels in Working Memory Load (WML) in red,
Vispual Perceptual Load (VPL) in green, and Auditory Per-
ceptual Load (APL) in blue.

4 EVALUATION
In order to create a robust model with sound generalization
capabilities, we accounted for the following main considera-
tions pertaining to deep learning:

(1) Modality of the dataset: As described above, data
gathered encompasses mental workload experienced
by participants across 3 different classes - MWL, VPL
and APL. At 2 different levels - off and high for each
class. We trained 2 different models to predict men-
tal workload at 2 levels off and high for MWL and
VPL respectively. We also trained another model, to

WML APL VPLModality Types

3DCNN BiConv
Model Architecture

Va Ad
Training Type

Figure 4: Models generated, with Modality Types being the
different inputs (Working Memory Load, Auditory Percep-
tual Load, and Visual Perceptual Load), Model Architech-
tures being 3D Convolutional Neural Networks and Bi-
Convoluational Long-Short TermMemory neural networks,
and Training Types being both regular as well as Adversar-
ial Training Methods. The path in red illustrates one of 12
possible models that will be trained for comparison.

demonstrate the capability of the model to distinguish
between perceptual modalities.

(2) Deep Learning Model Architecture: Each sample
of data obtained through high density fNIRS has spatio-
temporal characteristics, as such it exhibits informa-
tion across 4 dimensions viz. TxCxWxH where T , C ,
W and H denote the time axis, the oxy and deoxy
channels, the width of the channel matrix and the
height of the channel matrix, respectively. Since these
spatio-temporal characteristics are important to be
maintained within the modeling architecture, we ex-
perimented with two commonly used and novel tech-
niques. First, a variation of recurrent convolutional
neural network-based architecture called Convolutional
LSTM [67] and second, volumetric convolutions using
3D-CNN [61].

(3) Training Methodology: The data acquisition proto-
col followed resulted in a significant sampling bias
towards low working memory workload (WM) popu-
lation. As a result of this bias, conventional instance
based supervised learning approaches, which map in-
put space directly to WM labels, overfit low WM pop-
ulation. In order to combat the detrimental effects of
sampling bias in the dataset, we utilized distance met-
ric learning approach using Siamese Neural Networks
[36]. Additionally, we also modified our training pro-
tocol to mimic adversarial training typically used in
training GANs.

Siamese Neural Networks: Employing SNNs enabled
us to combat the bias in our dataset, resulting in our best
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performing model(s), originally introduced for verifying dig-
itized signatures [13], SNNs have since been extended for
one shot classification of images [36] and videos[65]. SNNs
learn to generate lower dimensional representations of their
high dimensional counterparts by learning to discriminate
among pairs of similar and dissimilar inputs. This is achieved
by using Contrastive loss [28] as the cost function. During
training, an input pair is fed to the model with their true
relationship y. In case of similar images, y = 1, otherwise
y = 0. The model computes an embedding for each of the
inputs in that pair. Contrastive loss maximizes the Euclidean
distance between embeddings of dissimilar inputs, and mini-
mizes the Euclidean distance between embeddings of similar
inputs. The loss function is defined as follows:

L( ®X1, ®X2,y,W ) = (1 − y)2
1
2
Dw

2 + y
1
2
max(0,m − Dw )

2 (1)

®X1, ®X2 are a pair of input vectors from the high dimen-
sional training set Sh ,W is a parametric function that com-
putes the corresponding lower dimensional mappings of Xi
and Dw is the parameterized euclidean distance between the
input pairs.

Adversarial Training:While employing a SNN did dras-
tically improve the overall accuracy, we were also able to
obtain a bump in the score by gradually changing the simi-
larity factor between input pairs as the training progressed.
In order to quantify the similarity between 2 inputs, we used
mean SSIM [64] as the similarity metric. Originally used to
quantify similarity between 2 images for image quality as-
sessment, we extend SSIM over 3D image volume by using
a 3-dimensional convolutional kernel. Using this training
strategy we allow a randomly initialized model to become
increasingly adept at generating separable and robust lower
dimensional mappings for marginally similar and dissimilar
input pairs.

Figure 5: A diagram representing the 3D CNN model archi-
tecture.

Model Architectures
3D Convolutional Neural Network: We first employed a
3D Convolutional Neural Network (3D-CNN) based archi-
tecture [61]. 3D CNNs provide the ability to model spatio-
temporal features unlike their 2D predecessors with the help
of 3D convolutional and 3D pooling operations. Figure 5
shows the architecture of our 3D CNN-based model. One of
the key hyper-parameters in this model is the 3D convolu-
tional kernel depth and the number of 3D-CNN convolutional
blocks. Through cross validation, we observed that a kernel
depth of 2-1-1-1 for each of the respective CONV-3D blocks
resulted in the highest validation performance.

Figure 6: A diagram representing the Conv-LSTM based Bi-
Directional LSTM model architecture.

Convolutional Long Short Term Memory Network:
The second network we employed is based on a Convolu-
tional LSTM (ConvLSTM) [67]. Conv-LSTM is a special case
of 1 dimensional LSTMs in that each of the hidden, cell and
input states as well as the input, forget and remember gates
are 3D tensors, which are then operated on by a convolu-
tional operation as opposed to a multiplication operation in
dense LSTMs. In order to extract the spatio-temporal features
from fNIRS data, we experimented with a 2-layer vanilla Con-
vLSTM and a single layer Bi-Directional ConvLSTM each
of the blocks followed by a series of fully connected layers
(FCNs). Our experiments concluded with the architecture
delineated in Figure 6.

5 DISCUSSION
Performance metrics such as f1-score, precision, recall and
accuracy for of each of the models formed by 12 (excluding
auditory modality due to absence of labels for high CWL)
total combinations of [modality-types]-[model-architecture]-
[training-method] represented in Figure 7 are obtained by
averaging confusion matrices from 10-fold cross validation
(CV). For each CV run data is obtained by splitting the par-
ticipants in 80:20 ratio for train and test set respectively.
Figure 10 shows the performance of models trained using
adversarial SNN training methodology only. Scores for mod-
els trained using vanilla supervised training have not been
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shown for brevity as the former training method results in
better performing models. However, in order to elucidate
the superiority of adversarial training in our case, we have
presented the confusion matrices of models obtained using
each of the 2 methods in Figure 8.

Model Precision Recall F1 Accuracy
Working Memory

3D-CNN 0.52 0.53 0.52 0.52
Bi-ConvLSTM 0.695 0.57 0.62 0.65

Visual Perception
3D-CNN 0.70 0.61 0.65 0.684

Bi-ConvLSTM 0.69 0.69 0.69 0.695
Auditory vs. Visual

3D-CNN 0.92 0.26 0.40 0.612
Bi-ConvLSTM 0.74 0.56 0.63 0.689

Figure 7: Classification performance of model architectures
on different modalities.

Although modeling techniques used by [53] result in a
higher f1 score, it is to be noted that, our models are trained
to generalize across participants as opposed [53] where the
models are trained in between participants resulting in a
participant agnostic model.

Significance of Adversarial SNN Architecture
The averaged confusion matrix for SNN based models are
shown in Figure 9. A comparative confusionmatrix for model
trained using vanilla supervised learning approach with the
same Bi-ConvLSTM architecture is presented to portray the
significance of implementing Adversarial SNN. SNN based
adversarial training methodology results in a model robust
to inherent bias in the dataset producing a well balanced
confusion matrix along the diagonal with higher f1-score.
On the other hand, vanilla supervised training method is suc-
ceptible to bias in the dataset resulting in a skewed confusion
matrix with a comparatively low f1-score.

6 CONCLUSION
Though the results generated by this initial exploration work-
ing with the current dataset were less than we had hoped,
this does not mean that the use of this project was necessar-
ily null and void. As the data had been in a less usable format
than we had originally hoped, taking the time up front on
the development of a system that allowed us to better handle
that type of data may pay dividends later on through future
interactions and explorations of the dataset.

Overall, the proposed architecture for developing a system
to classify different states of CWLwithin human participants
using fNIRS data may be a step in the right direction. Our

Adversarial Vanilla
Working Memory

Visual Perception

Figure 8: Robustness of Adversarial SNNBi-ConvLSTM com-
pared to vanilla Bi-ConvLSTM model to skew in the Work-
ing Memory dataset.

methods, including a system for taking domain expertise
to inform the models as well as using data mining and ad-
vanced classification techniques in order to feed back into
the domain expertise could drastically improve the accuracy
measures, transferablily, as well as the time window in which
CWL classification with fNIRS data can take place. Further
work is still needed within the PyoNIRS system, however.
Including keeping things up to date in terms of the latest
and greatest noise reduction, artefact removal and data pre-
processing techniques. Other improvements to the system
could include generating the results hypothesis tests, as well
as simpler statistical models, off of features extracted from
the data set that is selected, allowing fNIRS researchers who
are not interested in the CWL or deep learning classification
domains to use the software as a better way to organize their
data and generate more interesting results. Several steps can
be taken in order to make PyoNIRS more robust and usable
to a wider audience within the fNIRS community, and these
steps have currently been avoided in order to make room for
the labeling and modeling features of the system.
The novel approach to labeling systems detailed within

this report are not specific only to fNIRS data, these rules
could apply for other types of brain data such as fMRI and
EEG as why as other physiological measure provided the
pre-processing steps needed within those types of data we
replaced with the PyoNIRS pre-processing steps that are spe-
cific to the optical signals obtained from the fNIRS device.
Though it may be difficult to translate the work presented in
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this paper to other fields using advanced classification tech-
niques it might be possible that this type of data warehousing
and label selection based on domain expertise could help in
other fields as well. Academic research should, perhaps, more
broadly adopt some of the tools commonly used in industry
in order to simply data analysis processes, which are over
time cooked up independently from project to project.

Another possibility that could be opened up as a result of
the adaptation of PyoNIRS, or of a PyoNIRS like system, is
the possibility of creating a larger data repository amongst
fNIRS research groups, whichwould allow the sharing of data
sets coming from different labs, experimental procedures as
well as devices. In it’s current state the current code base
of PyoNIRS would not be able to handle such an influx of
data, but with some work and foresight the system should
be able to reliably scale to be able to accept and index data in
many different forms and translate it into a format that can
be comparable and usable my other researchers. This idea is
not without precedent within the neuroscientific community,
who are beginning to see the benefits of openly sharing their
MRI data and contributing to various open source projects
such as as the Brain-Map or Human Connectome projects.
Many of the problems facing the CWL domain may be

solved as a result of this sharing, and this ability to be better
organize and draw insights from data. As the field continues
to expand and continues to make increasing strides towards
real time prediction of cognitive states then the ability to
create other technologies that leverage these advances be-
comes more likely. It is crucial that these steps are therefore
taken with care as the development of systems that rely on
such predictions ought have a reasonable enough amount
of accuracy measures before these adaptions are deployed.
With a better handle and with better tools with with the
classify and make sense of brain data, these issues will be
minimized in the future.
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